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Multi-state models describe the transitions people experience as life unfolds. The
transition probabilities depend on sex, age, and attributes of the person and the
context. Empirical evidence suggests that attributes that cannot be measured
directly may at most be inferred from a long list of observable characteristics. A
cluster-based, discrete-time multi-state model is presented, where transition prob-
abilities are estimated simultaneously for several subpopulations of a hetero-
geneous population. The subpopulations are not defined a priori but are
determined on the basis of similarities in behavior in order to determine which
women exhibit similar characteristics with respect to method choice, method
switch, discontinuation and subsequent resumption of contraceptive use. The data
are from the life history calendar based on the Brazilian Demographic and Health
Survey 1996. The parameters of the model are estimated using the EM algorithm.
Seven subpopulations with heterogeneous transition probabilities are identified.

Keywords: finite mixture models; Markov models; unobserved heterogeneity; contra-
ceptive use dynamics; life history calendar

1. INTRODUCTION

Demographers are increasingly interested in understanding life
histories or individual biographies with a focus on events, their
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sequence, ordering and transitions that people make from one state of
life to another, for example, living to dead, single to married, or
migration from one residence to another. The transitions in life gener-
ate life paths that encompass both continuity and change. Multi-state
models have been developed to describe the dynamics and to determine
the states occupied at different ages. There are several applications of
multi-state models in family demography, labor economics, migration,
and public health research. Contraceptive use dynamics is a relatively
new area of application because age-specific data on method adoption,
method switch, and discontinuation of use became available only
recently (Islam, 1994). Most studies focus on reasons for stopping con-
traceptive use and apply competing risks models that include the mul-
tiple-decrement life table (Kost, 1993; Steele and Diamond, 1999).
Some consider contraceptive behavior after discontinuation. In these
studies, the unit of analysis is an episode or segment of method use
or non-use (Kost, 1993: 111). A multistate approach addresses
sequences of episodes. Both types of analyses take advantage of the
availability of calendar-history data on contraceptive use.

In multi-state models, which include the increment-decrement life
table, transitions are governed by transition probabilities. In demo-
graphic studies, the probabilities are usually functions of age and
sex, but they may also vary by other attributes. The attributes are gen-
erally used to stratify the population, although they may also be used
in a regression model as predictors of the transition probabilities. In
the latter case, the attributes are generally referred to as covariates.
Important assumptions include that attributes are observable and
the state occupancies are observed, that people with the same set of
attributes have the same transition probabilities (homogeneity pro-
perty), and that the transition probability depends on current status
and is independent of the past (Markov property).

In the model presented, group membership is not directly observed.
It is a latent variable, the value of which depends on the observed
characteristics. In other words, group membership is not defined a
priori but rather is determined endogenously by the model. The num-
ber of subpopulations depends on the extent of heterogeneity of the
observed population. In view of parsimony, the aim will be to find
the smallest number of subpopulations that adequately describes the
heterogeneous population. The latent variable representing group
membership is a discrete variable. It defines a finite mixture model
(McLachlan and Peel, 2000).

The development of finite mixture models dates to the nineteenth
century (Newcomb, 1886). In recent decades, due to advances in
computing, finite mixture models have proven powerful tools for the
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analysis of a wide range of social and behavioral science data. In the
social sciences, following the popularity of latent class models, which
have a long tradition (following the seminal work by Lazarsfeld), more
advanced finite mixture models have become popular. Recent
applications of finite mixture models span such social science areas as
economics (Wedel et al., 1993), psychology (Böckenholt, 1993), manage-
ment (Rosbergen et al., 1997), and marketing (Wedel and Kamakura,
1999). In particular, finite mixtures for sequential data have become
very popular in scientific fields such as machine learning (Rabiner
and Juang, 1986), biology (Eddy, 1998), economics (Guha and Banerji,
1998=1999), and marketing (Poulsen, 1990). An early approach to
sequential data is the mover-stayer model (Blumen et al., 1955). This
model assumes that the population consists of two subpopulations:
movers and stayers. Movers are assumed to follow a first-order Markov
process with a constant transition probability, whereas stayers have a
transition probability equal to the identity matrix. Thus, these models
belong to the latent Markov family with an immune fraction (one of
the subpopulations is immune to move) and can be estimated by the
EM algorithm (Fuchs and Greenhouse, 1988).

The applications of finite mixture models in demography are few
(Haughton and Haughton, 1996; Li and Choe, 1997; Willekens,
1999). Most studies of unobserved heterogeneity in demography
assume continuous mixing distributions (Vaupel and Yashin, 1985).

We present a finite mixture model for demographic sequential data.
In section 2, we discuss the main concepts on unobserved heterogen-
eity. In section 3, we introduce the finite mixture methodology and
the estimation using the EM algorithm. In section 4, we explore this
model by using simulated data that allow a better understanding of
model selection criteria. In section 5, we illustrate the procedure using
sequential data provided by the life history calendar implemented
under the 1996 Brazil Demographic and Health Survey. The
conclusions of this study are expected to yield new insights regarding
potential substantive applications in demography.

2. UNOBSERVED HETEROGENEITY

Latent variable models can be defined as f ðxiÞ ¼
R
f ðxijziÞf ðziÞdzi

where xi is an observed J – dimensional vector of variables, zi is a
latent unidimensional variable, and f ðziÞ is the mixing distribution
with respect to zi. Due to historical reasons, we focus on duration data
with a parametric mixing distribution. This model, also known as the
frailty model (Vaupel et al., 1979; Lancaster, 1979), usually assumes
a conjugate mixing distribution such as the gamma distribution
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(Lancaster, 1979; Vaupel et al., 1979). For a detailed analysis of this
models, see Lancaster (1990). One of the problems of this model per-
tains to the flexibility of the mixing distribution, i.e., the model may
not be robust concerning alternative parametric specifications of the
mixing distribution. Indeed, Heckman and Singer (1984) showed that
the results are sensitive to the choice of the mixing distribution.
Another aspect is that the same f ðxiÞ can be obtained with different
combinations of f ðxi; ziÞ and f ðziÞ (identification problem (Heckman
and Singer, 1984: 274)).

The parametric assumption of f ðziÞ can be relaxed by letting it be
unspecified, resulting in the semi-parametric mixture model (Lindsay
and Lesperance, 1995) that can be estimated by the nonparametric
maximum likelihood estimator (NPMLE) introduced by Robbins
(1950). This estimator, under a general set of assumptions including
identifiability, is consistent (Kiefer and Wolfowitz, 1956; Laird,
1978). Lindsay (1983a) established that the NPMLE of f ðziÞ is a
discrete distribution (Laird, 1978). Therefore, the NPMLE results in
a finite mixture with the number of components (points of support)
not specified a priori. For developments and understanding of the
characteristics of this estimator, see Laird (1978) and Lindsay
(1983a, 1983b), who analyzed the NPMLE from the geometric
viewpoint of the likelihood as a convex combination of the mixed
distribution. For a review, see Lindsay (1995).

3. THE FINITE MIXTURE MODEL

3.1. Model specification

Consider a sample of n respondents. A respondent will be denoted by
i ði ¼ 1; . . . ;nÞ. Each respondent is characterized by J attributes. An
attribute is denoted by j ðj ¼ 1; . . . ;JÞ: The j-th attribute of respondent
i is denoted by the random variable Xij and the sample value is the
realization xij: The vector Xi consists of elements Xij with
j ¼ 1; . . . ;J. The vector xi is defined similarly. Let x ¼ ðx1; . . . ;xnÞ
denote a J-dimensional sample of size n.

Respondents are grouped into S subpopulations, with a subpopula-
tion denoted by s ðs ¼ 1; . . . ;SÞ. The subpopulations, including their
numbers, are not defined a priori, but are an outcome of the analysis.
Thus, in advance one does not know how the population will be divided
into subpopulations. The subpopulation which respondent i belongs to
is denoted by the unobserved finite discrete variable Zi with Zi 2= and
= ¼ f1; 2; . . . ;Sg: The realization of the random value Zi is zi, and
z ¼ ðz1; . . . ; znÞ. Let fðZ1;X1Þ; . . . ; ðZn;XnÞg ¼ fðZi;XiÞgni¼1 be a sequence
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of independent pairs of random variables identically distributed and
assuming values on =�@, with = defined above and @ � <. Because
z is hidden or missing, the inference problem is to estimate the para-
meters of the model, say u, when only x is observed. Thus, the esti-
mation procedure has to be based on the marginal distribution of xi.

f ðxi;uÞ ¼
XS

s¼1

psfsðxi; hsÞ; ð1Þ

which defines a finite mixture (FM) model with S subpopulations. The
mixture proportions, ps ¼ pðZi ¼ s;uÞ, correspond to the a priori prob-
ability that individual i belongs to the subpopulation s, and gives the
subpopulation relative size. This mixing distribution, fpsgSs¼1, since it
is a weighting function, satisfies ps > 0 and

PS
s¼1ps ¼ 1. Within each

subpopulation (conditional on belonging to subpopulation s) obser-
vation xi is characterized by the density fsðXi; hsÞ ¼ pðXi ¼ xi j Zi ¼
s; hsÞ. The density is the probability that individual i in subpopulation
s has attributes xi. The functions fsðxi; hsÞ imply that all individuals in
one of the subpopulations have the same probability distribution, only
the parameters hs vary across subpopulations. The choice of fsðxi; hsÞ
depends on the nature of data. The parameters of the finite mixture
model to be estimated are u ¼ ðp1; . . . ; ps�1; h1; . . . ; hsÞ. Therefore, finite
mixture models can be seen as something between unmixed or homo-
geneous model ðS ¼ 1Þ and the NPMLE, since the mixing distribution
is the multinomial distribution with S points of support (known
a priori) and gives a more parsimonious representation of data than
the NPMLE.

We now introduce time (or age). Let Xijt denote the value of the
attribute j of individual i at time t. We will assume a discrete-time
process, since we observe the state at discrete times. The attribute is
measured repeatedly during a period from 0 to Ti ðt ¼ 0; 1; . . . ;TiÞ.
The length of the observation window may differ among individuals.
To simplify notation, we consider a single attribute ðJ ¼ 1Þ; however,
the extension for J > 1 is straightforward. Thus, the vectors Xi and xi

denote the consecutive values of the single attribute – respectively, Xit

and xit – , with t ¼ 0; . . . ;Ti. The value assumed by Xit is called state,
and the set of all possible values is the state space @. For a finite dis-
crete state space the attribute has finite states, say K categories, and
@ ¼ f1; . . . ;Kg.

The probability function of xi ¼ ðXi0;Xi1; . . . ;XiTi
Þ is extremely

difficult to characterize, due to its dimension ðTi þ 1Þ. A common
procedure to simplifying this expression is by assuming the Markov
property that states that the event Xt ¼ xt, only depends upon the
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previous state Xt�1 ¼ xt�1. The transition probability of a stationary
Markov chain (the transition probabilities are not dependent upon t)
is ajk ¼ PðXt ¼ k j Xt�1 ¼ jÞ, where t > 0, and j; k 2 @. A Markov chain
is completely specified by its transition probabilities and initial distri-
bution (Taylor and Karlin, 1994; Norris, 1997; Ross, 2000).

For individual i, the distribution of data conditional on belonging to
subpopulation s is fsðxi; hsÞ ¼ pðXi ¼ xi j Zi ¼ s; hsÞ. It defines an exten-
sion of the Markov chain incorporating unobserved heterogeneity,
which is represented by the latent variable Z in Figure 1, i.e., the
observed dynamics of individual i (represented by Xi) are conditional
on the subpopulation he belongs to. The random variables
ðX0;X1; . . . ;XTÞ are not independent from each other (see Figure 1b).
This first-order Markov model is an extension of the latent class model
(Lazarsfeld and Henry, 1968), which corresponds to a zero-order
Markov model assuming local independence.

To simplify notation, we denote PðX ¼ x; hÞ as pðx; hÞ. From the
Markov property, it comes

fsðxi; hsÞ ¼ pðxi0; hsÞ
YTi

t¼1

pðxit; xi;t�1; hsÞ; ð2Þ

where pðxit; xi;t�1; hsÞ is the transition probability that individual i is
in state xit at time t, given that he belongs to subpopulation s and is
in state xi;t�1 at time t� 1. The assumption of stationarity, i.e., the
assumption that the pattern of change persists over time, and the
assumption that all individuals in subpopulation s share the same pat-
tern, imply that the probability of making a transition from j to k is
independent of t and is the same for all individuals in a particular
subpopulation:

asjk ¼ PðXit ¼ k j Xi;t�1 ¼ j; hsÞ ¼ pðk; j; hsÞ; ð3Þ

FIGURE 1 Extension from a (a) Markov chain to a (b) finite mixture of
Markov chains.
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where t > 0 and j; k 2 f1; 2; . . . ;Kg. Each subpopulation has a different
transition matrix As ¼ ðasjkÞK ;K

j¼1;k¼1. The j-th row of As includes all
the conditional probability distributions of Xt given that Xt�1 ¼ j and
the individual i belongs to subpopulation s. Associated with
each initial response xi0, we have K binary variables yij ði ¼
1; . . . ;n; j ¼ 1; . . . ;KÞ defined by the indicator function yij ¼
Iðxi0 ¼ jÞ. The initial distribution Yi0 ¼ ðYi1; . . . ;YiKÞ of the dynamic
sequence follows a multinomial distribution, Yi0 j hs �
Multi Kð1; ks1; . . . ; ksKÞ, whose density is

pðIðxi0 ¼ 1Þ; . . . ; Iðxi0 ¼ KÞ; hsÞ ¼
YK

j¼1

kIðxi0¼jÞ
sj ; ð4Þ

with ksj ¼ PðIðXi0 ¼ jÞ j Zi ¼ sÞ. From (2), and using (3) and (4), we
conclude that the probability of an individual sequence belonging to
subpopulation s is

fsðxi; hsÞ ¼
YK

j¼1

kIðxi0¼jÞ
sj

YK

j¼1

YK

k¼1

a
nijk

sjk ; ð5Þ

where nijk is the number of transitions from j to k for individual i.
Finally, from (1), the finite mixture model for observation xi is given
by

f ðxi;uÞ ¼
XS

s¼1

ps
YK

j¼1

kIðxio¼jÞ
sj

Yk

j¼1

Yk

k¼1

a
nijk

sjk ; ð6Þ

with u ¼ ðp1; . . . ; pS�1; k11; . . . ; kSK ;a111; . . . ;aSKKÞ. As independent
parameters of this model, we have S� 1 prior probabilities, SðK � 1Þ
initial probabilities and SKðK � 1Þ transition probabilities. Thus, the
total number of independent parameters is SK2 � 1. A finite mixture
of Markov chains is not a Markov chain, which enables the modeling
of more complex patterns (see Appendix I).

Before finishing the specification of the model, we briefly discuss its
identification. In general, a parametric family of densities f ðxi;uÞ is
identified if distinct values of the parameter u determine distinct
members of the family of densities, i.e., f ðxi;uÞ ¼ f ðxi;u�Þ if and only
if u ¼ u� (besides label-switching problems). Thus, in a non-identified
model, an infinite number of solutions exists. The identifiability of
finite mixture models in the exponential family (normal and Poisson)
is generally ensured (see Titterington et al., 1985). However, some
models such as the latent class model may suffer from identifiability
problems (Goodman, 1974; Clogg, 1995).
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3.2. Model Estimation

The log-likelihood function for u, given that xi are independent from
each other, is

‘Sðu;xÞ ¼
Xn

i¼1

log
XS

s¼1

ps
YK

j¼1

kIðxi0¼jÞ
sj

YK

j¼1

YK

k¼1

a
nijk

sjk ; ð7Þ

and the maximum likelihood estimator (MLE) is ûu ¼ argmaxu ‘ðu;xÞ.
The MLE of u is obtained by iterative procedures, such as the Newton-
Raphson algorithm (Everitt, 1987). However, an attractive alternative
in the context of finite mixture models is the EM algorithm (Dempster
et al., 1977; McLachlan and Krishnan, 1997).

The EM algorithm simplifies a complex log-likelihood function into
a set of easily solvable log-likelihood functions by introducing the
‘‘missing variable’’ z. This algorithm iterates between two steps: in
the E–Step (Expectation Step), it estimates the conditional mean of
the missing variable given the previous estimate of the model para-
meters and the observations, and in the M–Step (Maximization Step),
it re-estimates the model parameters given the observations and the
soft clustering done by the E–Step. McLachlan and Krishnan (1997)
present a very detailed discussion of the EM algorithm. In Appendix
II, we present the implementation of the EM algorithm for this model.

3.3. Number of Subpopulations

A main issue is how to estimate S or how many subpopulations do we
need to consider in the analysis? A traditional approach to select the
best among different models is using a likelihood ratio test. However,
in the context of finite mixture models this approach is problematic.
The null hypothesis under test is defined on the boundary of the para-
meter space, and consequently the regularity condition of Cramer on
the asymptotic properties of the MLE is not valid under the null
hypothesis. Some recent results have been achieved (Chen et al.,
2001; Lo et al., 2001). However, most of these results are of difficult
implementation and usually derived for finite mixtures of normal
distributions.

As an alternative, there has been a recent interest in assessing the
finite mixture model fit via information statistics. These statistics are
based on the value of �2‘sðûu;xÞ of the model, where ûu represents the
maximum likelihood estimate adjusted for the number of free
parameters in the model (and other factors such as the sample size).
The basic principle under these information criteria is parsimony:
all other things being the same, we choose the model with fewer
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parameters. Thus, we select S, which minimizes the following cri-
terion Cs ¼ �2‘sðûu;xÞ þ dNs, where Ns is the total number of free
parameters of the model. According to the different values of d, we have
the Akaike Information Criterion (AIC: Akaike, 1974) ðd ¼ 2Þ, the
Bayesian Information Criterion (BIC: Schwarz, 1978) (d ¼ logn),
and the Consistent Akaike Information Criterion (CAIC: Bozdogan,
1987) ðd ¼ lognþ 1Þ. Bozdogan (1993) suggested the modified AIC
(AIC3) criterion, using 3 instead of 2 as penalizing factor. For these
heuristic criteria, smaller values mean more parsimonious models.
BIC and CAIC criteria have the advantage of being dimension consist-
ent, they point to the right model with probability one as the sample
size increases.

4. MONTE CARLO STUDY

4.1. Experimental Design

To evaluate the performance of the information criteria—AIC, AIC3,
CAIC, and BIC—and robustness across experimental conditions, a
Monte Carlo (MC) study was conducted.

The Monte Carlo (MC) experimental design controls the number of
components, number of variables, and the sample size. We considered
2- and 3-component models: S 2 f2; 3g. The number of repeated mea-
surements ðTi þ 1 ¼ T þ 1Þ was set at levels 30 and 60. The factor
sample size n is set at 200, 500, and 1000. Furthermore, we set
K ¼ 4 and equal component sizes ðps ¼ 1=SÞ. The true parameter
values are shown in Table 1. These values mimic the values shown
in our application which includes heavy retention probabilities and
absorbing states.

This MC study sets a 22� 3 factorial design with 12 cells. The main
performance measure used is the frequency with which each criterion
picks the correct model. For each dataset, each criterion is classified as
under-fitting, fitting, or over-fitting, based on the relation between S
and the estimated S by those criteria. Apart from the four information
criteria mentioned, we also investigated a different definition of the
BIC and CAIC criteria. Ramaswamy et al. (1993) and DeSarbo et al.
(2004) have also considered as ‘‘sample size’’ the repeated measure-
ments from each individuals. Therefore, the penalization would be
function of nT, instead of n.

Special care needs to be taken before arriving at conclusions based
on MC results. We performed 200 replications within each cell to
obtain the frequency distribution of selecting the true model, resulting
in a total of 2400 datasets. To avoid local optima, for each number of
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components (2, 3, and 4) the EM algorithm was repeated 5 times with
random starting centers, and the best solution (maximum likelihood
value out of those 5 runs) and model selection results were kept.
The EM algorithm ran until the difference between log-likelihoods
being smaller than 10�6 (tolerance level).

4.2. Results

The key feature of the results is the overall remarkable performance of
AIC3 (Table 2). While most of the criteria perform satisfactory, AIC3
identifies the true model 99.4% and 97.8% for the two- and three-
component model, respectively. For both CAIC and BIC, nT reduces
their performance and it is not considered hereafter. Overall, BIC per-
forms well with 99.7% and 85.8% for the two- and three-component
model respectively. As in other studies, our results document the tend-
ency of AIC to over-fit. BIC and CAIC tend to under-fit, especially for
the three-component model.

A second objective of the study was to compare these criteria across
the factors in the design. Increasing the sample size almost always
improves the performance of the information criteria. However, for
AIC increasing the sample size tends to increase the over-fit, without
improvement in fit. Increasing the number of measurements (T)

TABLE 1 The True Parameter Values for the Monte Carlo Study

Two-component model (S ¼ 2) Three-component model (S ¼ 3)

s ¼ 1 s ¼ 2 s ¼ 1 s ¼ 2 s ¼ 3

ks1 0.20 0.30 0.20 0.30 0.10
ks2 0.30 0.30 0.30 0.30 0.40
ks3 0.10 0.30 0.10 0.30 0.40
as11 0.80 0.85 0.80 0.85 1.00
as12 0.05 0.10 0.05 0.10 0.00
as13 0.05 0.02 0.05 0.02 0.00
as21 0.10 0.02 0.10 0.02 0.02
as22 0.70 0.85 0.70 0.85 0.95
as23 0.10 0.03 0.10 0.03 0.01
as31 0.10 0.05 0.10 0.05 0.03
as32 0.01 0.05 0.01 0.05 0.002
as33 0.80 0.85 0.80 0.85 0.90
as41 0.01 0.05 0.01 0.05 0.04
as42 0.01 0.02 0.01 0.02 0.02
as43 0.13 0.03 0.13 0.03 0.04

Note: ks4 ¼ 1� ks1 � ks2 � ks3 and asj4 ¼ 1� asj1 � asj2 � asj3:
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TABLE 2 Results of the Monte Carlo Study

Criteria

CAIC BIC

Factors AIC AIC3 n nT n nT

Number of components (S ¼ 2)

Sample size (n)

200 Underfit 0.0 0.0 8.8 48.0 0.8 41.8

Fit 77.7 99.0 91.2 52.0 99.2 58.2

Overfit 22.3 1.0 0.0 0.0 0.0 0.0

500 Underfit 0.0 0.0 0.0 0.0 0.0 0.0

Fit 78.5 99.3 100.0 100.0 100.0 100.0

Overfit 21.5 0.7 0.0 0.0 0.0 0.0

1000 Underfit 0.0 0.0 0.0 0.0 0.0 0.0

Fit 75.0 100.0 100.0 100.0 100.0 100.0

Overfit 25.0 0.0 0.0 0.0 0.0 0.0

Number of variables (T)

30 Underfit 0.0 0.0 5.8 32.0 0.5 27.8

Fit 75.0 99.5 94.2 68.0 99.5 72.2

Overfit 25.0 0.5 0.0 0.0 0.0 0.0
60 Underfit 0.0 0.0 0.0 0.0 0.0 0.0

Fit 79.0 99.3 100.0 100.0 100.0 100.0

Overfit 21.0 0.7 0.0 0.0 0.0 0.0

Total

Underfit 0.0 0.0 2.9 16.0 0.3 13.9

Fit 77.0 99.4 97.1 84.0 99.7 86.1

Overfit 23.0 0.6 0.0 0.0 0.0 0.0

Number of components (S ¼ 3)

Sample size (n)

200 Underfit 0.0 4.0 48.2 55.2 41.2 52.2

Fit 87.8 95.5 51.8 44.8 58.8 47.8

Overfit 12.2 0.5 0.0 0.0 0.0 0.0

500 Underfit 0.0 0.0 1.2 34.5 0.2 21.5

Fit 82.0 98.8 97.8 64.5 98.8 77.5

Overfit 18.0 1.2 1.0 1.0 1.0 1.0

1000 Underfit 0.0 0.0 0.0 0.0 0.0 0.0

Fit 79.8 99.5 100.0 100.0 100.0 100.0

Overfit 20.2 0.5 0.0 0.0 0.0 0.0

Number of variables (T)

30 Underfit 0.0 2.7 33.0 56.3 27.7 47.7

Fit 80.8 96.5 67.0 43.7 72.3 52.3
Overfit 19.2 0.8 0.0 0.0 0.0 0.0

60 Underfit 0.0 0.0 0.0 3.5 0.0 1.5

Fit 85.5 99.3 99.3 95.8 99.3 97.8

Overfit 14.5 0.7 0.7 0.7 0.7 0.7

Total

Underfit 0.0 1.3 16.5 29.9 13.9 24.6

Fit 83.2 97.9 83.2 69.8 85.8 75.1

Overfit 16.8 0.8 0.3 0.3 0.3 0.3

Model-based Clustering of Sequential Data 145



mostly improves the performance of the information criteria, reduces
the under-fitting and over-fitting for CAIC=BIC and AIC, respectively.

Comparing the results for the two- and three-component model, we
observed that the identification of the correct model is easier for S ¼ 2,
with exception for AIC. However, in general, across our design AIC3
presents a balanced result across the design, and will be used in the
selection of the model in our application.

5. APPLICATION

We analyzed contraceptive use dynamics as an illustration of our
approach to model-based clustering of sequential data with demo-
graphic purposes. First, the data are described; then, we estimate
the transition probabilities under the assumption of homogeneity,
when the process is represented by a single Markov chain. Heterogen-
eity is thereafter introduced by allowing more than one subpopulation.

We use the life history calendar (LHC), which is a major and rela-
tively new instrument for the collection of retrospective data (Belli
et al., 2001). Data for this application come from the Brazil Demo-
graphic and Health Survey (BDHS) conducted between March 1996
and June 1996. The BDHS includes a calendar of monthly data on con-
traceptive use and pregnancy status. More than 20 countries with DHS
surveys adopted the LHC. The BDHS is nationally representative,
stratified two-stage sample. A total of 12612 women of age 15–49 were
interviewed. The calendar covers the period from January 1991 to the
month of interview (fromMarch to June 1996). Details of the BDHS are
available in the main report (BENFAM andMacro International 1997).
We selected the 20–34 age interval at the time of the interview. The
reason for this selection is twofold: firstly, to avoid that subpopulations
would just be picking women at different stages of the life course, we
decided to select a shorter age interval; secondly, there is a decline in
contraceptive usage after the age 35 (Dias and Kathun, 2002). We
focused on the Northeast region of Brazil that plays an important role
in the declining fertility in Brazil (Gupta and Leite, 1999). Therefore,
the final sample size is 2228 women.

Table 3 presents the categories defined in the BDHS (BDHS Label).
Since this state space is substantially too large to extract meaningful
conclusions, and some of the states are related, we aggregate these
categories into 5 states: 1 – Non-use of contraception, 2 – Sterilization
(Female sterilization, Male sterilization), 3 – Pregnancy (Pregnancy,
Birth, Terminated pregnancy=non-live birth), 4 – Pill, and 5 – Other
temporary methods (IUD-Intrauterine device, Injection, Diaphragm=
foam=jelly, Condom, Periodic abstinence=rhythm, Withdrawal, and
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Other traditional methods). Table 3 summarizes the state space used
to model the dynamics of contraceptive use in this application.

We examined the data using a finite mixture of Markov chains to
incorporate unobserved heterogeneity. Women are grouped in subpo-
pulations on the basis of similarity of their behavior. First, we address
the selection and estimation of the model; we then focus on the
interpretation.

We estimated the finite mixture of Markov chains with a different
number of subpopulations from 1 to 10, using 20 different starting
values to avoid local maxima. If there is a single population, the popu-
lation is homogeneous and all individuals have the same transition
probabilities. From the information criteria presented in Table 4, at
least 3 subpopulations have to be included in the model (S� 3), which
corresponds to at least 74 free parameters (Figure 2). However, based
on the simulation study presented earlier, we conclude that the selec-
tion based on the AIC3 more likely recovers the true dimension of the
model. Therefore, we set a solution with 7 subpopulations to obtain a
better representation of unobserved heterogeneity.

Tables 5 and 6 present the estimate of the parameters of the model.
Results for the homogeneous population (aggregate results: S ¼ 1) are
reported as well. We first analyze the homogeneous population as a
benchmark to show the advantages of the proposed method. For the
homogeneous population, more than half of the women in January
1991 were not using any method of contraception, 8.4% were sterilized

TABLE 3 State Space in DHS Data and Aggregated

State space DHS label BDHS code

1 Non-use of contraception 0
2 Sterilization Female sterilization 6

Male sterilization 7
3 Pregnancy Pregnancy P

Birth B
Terminated pregnancy=

non-live birth
T

4 Pill 1
5 Other temporary methods IUD 2

Injections 3
Diaphragm=foam=jelly 4
Condom 5
Periodic abstinence=rhythm 8
Withdrawal 9

Total Other traditional methods W
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(or their partner), and 16.6%were using the pill. The survey also shows
that 11.4% of the women were pregnant in January 1991. Results for
the homogeneous population in Table 6 show a strong persistence of
staying in the same state. Indeed, excluding pregnancy ðâa33 ¼ 0:879Þ,
the probability that the process remains in the same state is always
greater than 0.95. Note that sterilization is an absorbing state
ðâa22 ¼ 1Þ. This description of the dynamics of contraceptive use is not
very informative, because all women are assumed to follow exactly
the same pattern over time. Apart from that, the Markov property
under the homogeneous population might be problematic in general,
and for the pregnancy sequence in particular. However, extending
the Markov property incorporating unobserved heterogeneity, the

TABLE 4 Information Criteria

No. of
subpopulations Log-likelihood

No. of
free parameters

Information criteria

BIC AIC AIC3 CAIC

1 �33251.8 24 66688.7 66551.7 66575.7 66712.7
2 �31959.5 49 64296.7 64017.0 64066.0 64345.7
3 �31608.5 74 63787.5 63365.1 63439.1 63861.5
4 �31505.5 99 63774.2 63209.0 63308.0 63873.2
5 �31414.5 124 63785.0 63077.1 63201.1 63909.0
6 �31379.6 149 63907.9 63057.2 63206.2 64056.9
7 �31329.6 174 64000.5 63007.2 63181.2 64174.5
8 �31294.3 199 64122.6 62986.5 63185.5 64321.6
9 �31262.6 224 64252.0 62973.2 63197.2 64476.0
10 �31216.9 249 64353.4 62931.9 63180.9 64602.4

FIGURE 2 Information criteria.
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states become dependent through the latent variable Z (see Figure 1),
relaxing this assumption (see Appendix I).

We consider the case S ¼ 7. For the heterogeneous population, the
prior probability of each subpopulation ðp̂psÞ indicates that the subpo-
pulation size is ranged from 5.4% to 30.2% of the complete sample
(Table 5). Subpopulation I, the largest (30.2% of the sample), consists
predominantly of non-users of contraception. Indeed, 87.6% of the
women in this subpopulation stay in the non-users state in this period,
since this state is almost absorbing to this subpopulation (0.996). For
8.8% of the women, the process is similar; women remain in the
sterilization state, which is an absorbing state. Thus, from a period
perspective, this subpopulation presents stable processes, in which
pregnancies are absent. Subpopulation II (5.4% of the sample) repre-
sents users of contraception (starting as pill user: 47.3%; other tem-
porary methods: 26.1%; and sterilization: 17.3%). Given the high
retention probability, the subpopulation is rather stable. Subpopula-
tion III (9.6% of the sample) represents the intensive users of
contraceptive methods. Indeed, only 6.7% of the women in this sub-
population begin without a contraceptive method. Pill users represent
the largest group in this subpopulation (68.7%). When women in this
subpopulation do not use contraceptive methods, their intention might
likely be related to a desired pregnancy. Women in subpopulation IV
(7.9% of the sample) corresponds to a more diverse subpopulation
which prefers other temporary methods at the beginning (41.2%)
and tends to be pregnant (25.8%). Women in subpopulation V
(11.9% of the sample) tend to not use contraception at the beginning
(89.6%). Subpopulation VI (10.4% of the sample) does not use pill
and present 48.8% of the women pregnant at the beginning. Finally,

TABLE 5 Estimates of the Initial Distribution and Prior Probabilities

Contraceptive use
Homogeneous
population

Heterogeneous population

1 2 3 4 5 6 7

Non-use of
contraception

0.568 0.876 0.037 0.067 0.023 0.896 0.313 0.625

Sterilization 0.084 0.088 0.173 0.095 0.124 0.084 0.093 0.039
Pregnancy 0.114 0.000 0.057 0.141 0.258 0.020 0.488 0.095
Pill 0.166 0.035 0.473 0.687 0.184 0.000 0.000 0.202
Other temporary

methods
0.068 0.001 0.261 0.010 0.412 0.000 0.106 0.039

Subpopulation
prior probability

1.000 0.302 0.054 0.096 0.079 0.119 0.104 0.247
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TABLE 6 Estimates of the Transition Probabilities

Contraceptive use
Destination

Origin (1) (2) (3) (4) (5)

Homogeneous population

Non-use of contraception (1) 0.958 0.001 0.022 0.012 0.006

Sterilization (2) 0.000 1.000 0.000 0.000 0.000

Pregnancy (3) 0.095 0.015 0.879 0.006 0.005

Pill (4) 0.028 0.002 0.007 0.954 0.009
Other temporary methods (5) 0.019 0.002 0.018 0.011 0.951

Heterogeneous population

Subpopulation 1

Non-use of contraception (1) 0.996 0.000 0.001 0.008 0.002

Sterilization (2) 0.000 1.000 0.000 0.000 0.000

Pregnancy (3) 0.052 0.010 0.899 0.015 0.025

Pill (4) 0.019 0.000 0.000 0.967 0.013

Other temporary methods (5) 0.008 0.000 0.024 0.010 0.959

Subpopulation 2

Non-use of contraception (1) 0.744 0.000 0.256 0.000 0.000

Sterilization (2) 0.000 1.000 0.000 0.000 0.000

Pregnancy (3) 0.000 0.057 0.875 0.029 0.038

Pill (4) 0.017 0.001 0.006 0.971 0.004

Other temporary methods (5) 0.010 0.005 0.019 0.004 0.963

Subpopulation 3

Non-use of contraception (1) 0.580 0.012 0.196 0.183 0.030

Sterilization (2) 0.000 1.000 0.000 0.000 0.000

Pregnancy (3) 0.096 0.018 0.877 0.006 0.002
Pill (4) 0.026 0.004 0.008 0.955 0.008

Other temporary methods (5) 0.016 0.010 0.027 0.146 0.802

Subpopulation 4

Non-use of contraception (1) 0.451 0.014 0.141 0.175 0.219

Sterilization (2) 0.000 1.000 0.000 0.000 0.000

Pregnancy (3) 0.106 0.012 0.868 0.005 0.009

Pill (4) 0.010 0.000 0.007 0.964 0.018

Other temporary methods (5) 0.005 0.001 0.016 0.003 0.975

Subpopulation 5

Non-use of contraception (1) 0.964 0.000 0.017 0.011 0.007

Sterilization (2) 0.000 1.000 0.000 0.000 0.000

Pregnancy (3) 0.099 0.005 0.887 0.007 0.002

Pill (4) 0.090 0.002 0.017 0.880 0.012

Other temporary methods (5) 0.258 0.000 0.065 0.072 0.605

Subpopulation 6

Non-use of contraception (1) 0.941 0.004 0.046 0.005 0.003

Sterilization (2) 0.000 1.000 0.000 0.000 0.000

Pregnancy (3) 0.094 0.028 0.867 0.007 0.004
Pill (4) 0.053 0.016 0.000 0.888 0.043

Other temporary methods (5) 0.024 0.002 0.008 0.006 0.960

Subpopulation 7

Non-use of contraception (1) 0.896 0.004 0.057 0.030 0.013

Sterilization (2) 0.000 1.000 0.000 0.000 0.000

Pregnancy (3) 0.106 0.009 0.882 0.002 0.001

Pill (4) 0.031 0.000 0.006 0.957 0.006

Other temporary methods (5) 0.028 0.000 0.017 0.009 0.946
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subpopulation VII, the second largest group (24.7%), consists largely
of non-users of contraception at the beginning (62.5%), and tends to
switch to the pregnancy state (0.057).

Once the subpopulations are identified—and we did not know in
advance their number and behaviors—each subpopulation is charac-
terized through observable variables, which are needed for the setting
of specific communication strategies and family planning services.
A large number of subpopulations (S) allows a more specific targeting.
Sometimes, there are good proxy variables for the unobserved
heterogeneity as this application shows. Variables are age, region,

TABLE 7 Characterization of the Identified Subpopulations (Percentages)

Background

characteristics

Homogeneous

population

Heterogeneous population

1 2 3 4 5 6 7

Age of respondent (���)

20–24 37.21 43.07 14.71 27.78 20.65 52.24 20.99 40.73

25–29 33.17 26.24 40.44 38.33 38.71 26.12 46.96 37.09

30–34 29.62 30.69 44.85 33.89 40.65 21.63 32.04 22.18

Place of residence (���)
Capital, large city 32.27 34.16 46.32 29.44 38.71 29.80 21.55 29.64

Small city 17.24 19.68 14.71 22.78 18.71 12.65 17.13 13.96

Town 24.01 24.38 20.59 28.33 17.42 27.76 22.10 23.71

Countryside 26.48 21.78 18.38 19.44 25.16 29.80 39.23 32.70

Education of respondent (���)

No education 7.76 6.31 4.41 5.00 6.45 5.31 16.57 10.33

Primary 35.41 30.69 28.68 41.11 34.19 36.73 42.54 39.77

Secondary 53.14 57.92 64.71 50.56 52.90 53.88 40.33 47.80

Higher 3.68 5.07 2.21 3.33 6.45 4.08 0.55 2.10

Current marital status (���)

Never married 26.93 58.29 1.47 2.22 7.74 25.31 4.97 7.65

Married 41.88 24.75 63.24 63.33 60.65 35.92 43.65 52.01

Living together 21.95 10.52 24.26 28.89 24.52 23.27 37.57 29.83

Widowed 0.72 0.87 0.74 0.00 0.00 0.41 0.55 1.15

Divorced 0.31 0.00 0.74 0.00 1.29 0.82 0.00 0.38

Not living together 8.21 5.57 9.56 5.56 5.81 14.29 13.26 8.99

Occupation of respondent (���)

Not working 42.71 36.15 41.18 51.67 35.48 45.90 51.11 47.89
Prof., Tech., Manag. 9.14 12.92 10.29 7.22 12.90 7.38 4.44 4.98

Clerical 8.64 10.43 8.09 8.89 11.61 8.20 6.67 5.94

Sales 12.42 13.54 19.12 11.67 13.55 6.97 9.44 12.45

Agriculture, self employed 6.57 6.09 1.47 3.33 7.74 5.33 12.22 8.05

Agriculture, employee 0.18 0.12 0.00 0.00 0.65 0.41 0.00 0.19

Household and domestic 10.35 11.80 6.62 6.67 6.45 16.39 9.44 9.00

Services 4.95 4.22 5.15 3.89 7.74 6.15 3.33 5.56

Skilled manual 1.17 1.49 1.47 1.11 1.94 0.41 1.11 0.77

Unskilled manual 3.87 3.23 6.62 5.56 1.94 2.87 2.22 5.17

���p < 0.001.
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place of residence, education, current marital status, and occupation of
the women. Women were allocated to the subpopulations based on
the posterior probability (optimal Bayesian classification) given by
Eq. (10). We used chi-square tests (Pearson’s statistic) to test the level
of association between the classification of women into these three
subpopulations and the background variables. All these variables
are statistically related with the classification rule (p < 0.001). The
results are summarized in Table 7. Subpopulation I is characterized
mostly by younger women from urban places with secondary or high
education, never married with high qualified occupation. Subpopula-
tion II is characterized mostly by older married women from large
cities, with secondary education. Woman in Subpopulation III tend
to be in the 25–29 age range from small cities or towns and with pri-
mary or secondary education. They are married and they do not work.
Subpopulation IV consists of older married women from large cities
with secondary or high education. Subpopulation V tends to be rural
with household and domestic jobs. They are younger with primary
and secondary education. Subpopulation VI is rural with low edu-
cation and mostly not working. Finally, subpopulation VII tends to
be younger with low education and married. They live mostly in rural
areas. We conclude that age, place of residence, education, and current
marital status discriminate these subpopulations. The occupation of
respondent is not so strong in discriminating the subpopulations,
but it helps in giving a more precise picture of the segments. It should
be noted that other background variables not considered in this appli-
cation might play a role in characterizing these subpopulations as
proxies of the unobserved heterogeneity.

These results have implications for family planning policies and
programs. This illustration demonstrates the advantage of using finite
mixture models for describing dynamic patterns of behavior that helps
in developing subpopulation-tailored family planning campaigns. It is
an aid in identifying subpopulations with special needs that need to be
addressed using different programs.

6. CONCLUSION

We provide a new approach to modeling demographic sequential data
incorporating unobserved heterogeneity. Because of the dependency
over time, heuristic procedures such as cluster analysis are not appro-
priate. Finite mixtures as a model-based clustering procedure provide
an attractive alternative whenever one needs to identify subpopula-
tions with heterogeneous behavior. In particular, we propose the analy-
sis of discrete sequential data using a finite mixture of Markov chains.
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The adoption of a contraceptive method, contraceptive switching,
and discontinuation of contraceptive practice involve transitions to
new contraceptive use states. Many family planning programs are
directed towards these transitions. To be effective, programs should
treat people with different behavior differently. Model-based cluster-
ing techniques are instruments for designing differential policies
and programs.

We applied this model to the contraceptive use calendar of the
Brazilian Demographic and Health Survey 1996 to identify groups of
women with similar contraceptive use patterns. We found seven sub-
populations with differential contraceptive use and dynamics. The
seven subpopulations were described further using background char-
acteristics.

APPENDIX I

Let us show that a mixture of Markov chains is not a Markov chain. As
before, let xit and ~xxit ¼ ðxi1; . . . ; xi;t�1Þ. Then, we have

pðxitj~xxit;uÞ ¼
Xs

s¼1

pðxit; zsj~xxit;uÞ

¼
Xs

s¼1

pðzsj~xxit;uÞpðxitjzs; ~xxit;uÞ: ð8Þ

Because, it is assumed that within each component (given zs) the pro-
cess is Markovian,

pðxitjzs; ~xxit;uÞ ¼ pðxitjzs; xi;t�1;uÞ;

pðxitj~xxit;uÞ ¼
Xs

s¼1

pðzsj~xxit;uÞpðxitjzs; xi;t�1;uÞ: ð9Þ

Therefore, the process is no longer Markovian and can mimic com-
plex sequential patterns through the latent variable. Note that the
same conclusion can be reached by Figure 1; that is, conditional on
z, the variables are independent from the past; unconditional on z
(finite mixture model) all the past models xit through z.

APPENDIX II

The EM algorithm proceeds as follows. Let us assume that we have
obtained an approximation uðhÞ to estimate u given by uðhÞ ¼
ðpðhÞ1 ; . . . ; pðhÞS�1; h

ðhÞ
1 ; . . . ; hðhÞS Þ. The general objective is that the next
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estimate uðhþ1Þ will be closer to ûu. The auxiliary Q function, defined as
Qðu;uðhÞÞ ¼ E½log pðZ;XjuÞjX ¼ x;uðhÞ�, corresponds to the conditional
expectation of the missing variable Z given observed data and para-
meters, where pðZ;XjuÞ is the density of the complete data. For the
E-step, we need to compute Qðu;uðhÞÞ ¼

Pn
i¼1

PS
s¼1 E½ZisjXi ¼ xi;uðhÞ�

logðpsfsðxi; hsÞÞ. Let

aðhþ1Þ
is ¼ E½ZisjXi ¼ xi;u

ðhÞ� ¼ pðhÞs fsðxi; h
ðhÞ
s Þ

PS
r¼1 p

ðhÞ
r frðxi; h

ðhÞ
r Þ

ð10Þ

be the conditional expectation of Zis at the ðhþ 1Þth iteration. Then, we
obtain

Qðu;uðhÞÞ ¼
Xn

i¼1

XS

s¼1

aðhþ1Þ
is log ps

þ
Xn

i¼1

XS

s¼1

aðhþ1Þ
is log fsðxi; hsÞ: ð11Þ

For the M-step, we have to maximize (11) over u. At the ðhþ 1Þth
iteration in the M-step, we choose the value of u, say uðhþ1Þ, which
maximizes Qðu;uðhÞÞ, resulting pðhþ1Þ

s ¼ 1
n

Pn
i¼1 a

ðhþ1Þ
is and hðhþ1Þ

s ¼
argmaxhs

Pn
i¼1 a

ðhþ1Þ
is log fsðxi; hsÞ; for s ¼ 1; . . . ;S: Under suitable

regular conditions, fuðhÞg converges to a stationary point of ‘ðu;xÞ
(Dempster et al., 1977; McLachlan and Krishnan, 1997). The conver-
gence of the EM algorithm as well as other iterative algorithms means
convergence to a local maximum of ‘ðu;xÞ.

For our model, the estimate of the parameters can be found using
the EM iterative process defined by aðhþ1Þ

is , given by (10), and

pðhþ1Þ
s ¼ 1

n

Xn

i¼1

aðhþ1Þ
is

kðhþ1Þ
sj ¼

Pn
i¼1 a

ðhþ1Þ
is Iðxi0 ¼ jÞ

Pn
i¼1 a

ðhþ1Þ
is

a
ðhþ1Þ
sjk ¼

Pn
i¼1 a

ðhþ1Þ
is nijk

PK
r¼1

Pn
i¼1 a

ðhþ1Þ
is nijr

:

ð12Þ

Thus, (10) and (12) define the EM iterative process to estimate this
model. For S ¼ 1, we have the homogeneous population with a unique
Markov chain, and these results reduce to the maximum likelihood esti-
mates of a single Markov chain (Bishop et al., 1975). The EM algorithm
for this model was programmed in MATLAB 6.5 (MathWorks, 2002).
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Böckenholt, U. (1993). A latent class regression approach for the analysis of recurrent
choice data. British Journal of Mathematical and Statistical Psychology 46: 95–118.

Bozdogan, H. (1987). Model selection and Akaike’s information criterion (AIC): The gen-
eral theory and its analytical extensions. Psychometrika 52: 345–370.

Bozdogan, H. (1993). Choosing the number of component clusters in the mixture-model
using a new informational complexity criterion of the inverse-Fisher information
matrix. In O. Opitz, B. Lausen, and R. Klar (Eds.), Information and Classification,
Concepts, Methods and Applications. Berlin: Springer-Verlag, pp. 40–54.

Chen, H., Chen, J., and Kalbfleisch, J.D. (2001). A modified likelihood ratio test for
homogeneity in finite mixture models. Journal of Royal Statistical Society B 63:
19–29.

Clogg, C.C. (1995). Latent class models. In G. Arminger, C.C. Clogg, and M.E. Sobel
(Eds.), Handbook of Statistical Modeling for the Social and Behavioral Sciences.
New York: Plenum Press, pp. 311–359.

Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977). Maximum likelihood from incom-
plete data via the EM algorithm (with discussion). Journal of the Royal Statistical
Society B 39: 1–38.

DeSarbo, W.S., Lehmann, D.R., and Hollman, F.G. (2004). Modeling dynamic effects in
repeated-measures experiments involving preference=choice: An illustration involv-
ing stated preference analysis. Applied Psychological Measurement 28: 186–209.

Dias, J.G. and Kathun, M. (2002). Modelling the choice of contraceptive methods
incorporating unobserved heterogeneity. Working paper, SOM Research Centre,
University of Groningen.

Eddy, S.R. (1998). Profile hidden Markov models. Bioinformatics 14: 755–763.
Everitt, B.S. (1987). Introduction to Optimization Methods and their Application in

Statistics. London: Chapman and Hall.
Fuchs, C. and Greenhouse, J.B. (1988). The EM algorithm for maximum likelihood

estimation in the mover-stayer model. Biometrics 44: 605–613.
Goodman, L. (1974). Exploratory latent structure analysis using both identifiable and

unidentifiable models. Biometrika 61: 215–231.
Guha, D. and Banerji, A. (1998=1999). Testing for regional cycles: A Markov-switching

approach. Journal of Economics and Social Measurement 25: 163–182.
Gupta, N. and Leite, I.C. (1999). Adolescent fertility behavior: Trends and determinants

in Northeastern Brazil. International Family Planning Perspectives 25: 125–130.
Haughton, D. and Haughton, J. (1996). Using a mixture model to detect son preference

in Vietnam. Journal of Biosocial Sciences 28: 355–65.
Heckman, J. and Singer, B. (1984). A method for minimizing the impact of distributional

assumptions in econometric models for duration data. Econometrica 52: 271–320.

Model-based Clustering of Sequential Data 155



Islam, M.A. (1994). Multistate survival models for transitions and reverse transitions:
An application to contraceptive use data. Journal of the Royal Statistical Society
157: 441–456.

Kiefer, J. and Wolfowitz, J. (1956). Consistency of the maximum likelihood estimator in
the presence of infinitely many incidental parameters. The Annals of Mathematical
Statistics 27: 887–906.

Kost, K. (1993). The dynamics of contraceptive use in Peru. Studies in Family Planning
24: 109–119.

Laird, N. (1978). Nonparametric maximum likelihood estimation of a mixing distri-
bution. Journal of the American Statistical Association 73: 805–811.

Lancaster, T. (1979). Econometric methods for the duration of unemployment. Econome-
trica 47: 939–956.

Lancaster, T. (1990). The Econometric Analysis of Transition Data. Cambridge:
Cambridge University Press.

Lazarsfeld, P.F. and Henry, N.W. (1968). Latent Structure Analysis. New York:
Houghton Mifflin.

Li, L. and Choe, M.K. (1997). A mixture model for duration data: Analysis of second
births in China. Demography 34: 189–197.

Lindsay, B.G. (1983a). The geometry of mixture likelihoods: A general theory. The
Annals of Statistics 11: 86–94.

Lindsay, B.G. (1983b). The geometry of mixture likelihoods. Part II: The exponential
family. The Annals of Statistics 11: 783–792.

Lindsay, B.G. (1995). Mixture Models: Theory, Geometry and Applications. CA: IMS
Hayward.

Lindsay, B.G. and Lesperance, M.L. (1995). A review of semiparametric mixture models.
Journal of Statistical Planning and Inference 47: 29–39.

Lo, Y., Mendell, N.R., and Rubin, D.B. (2001). Testing the number of components in a
normal mixture. Biometrika 88: 767–778.

Math Works (2002). MATLAB 6.5. Natick. MA: The Math Works Inc.
McLachlan, G.J. and Peel, D. (2000). Finite Mixture Models. New York: John Wiley and

Sons.
McLachlan, G.J. and Krishnan, T. (1997). The EM Algorithm and Extensions. New York:

John Wiley and Sons.
Newcomb, S. (1886). A generalized theory of the combination of observations so as to

obtain the best result. American Journal of Mathematics 8: 343–366.
Norris, J.R. (1997). Markov Chains. Cambridge: Cambridge University Press.
Poulsen, C.S. (1990). Mixed Markov and latent Markov modeling applied to brand choice

behavior. International Journal of Research in Marketing 72: 5–19.
Rabiner, L.R. and Juang, B.H. (1986). An introduction to hidden Markov models. IEEE

Acoustics, Speech and Signal Processing Magazine 3: 4–16.
Ramaswamy, V., DeSarbo, W.S., Reibstein, D.J., and Robinson, W.T. (1993). An empiri-

cal pooling approach for estimating marketing mix elasticities with PIMS data.
Marketing Science 12: 103–124.

Robbins, H. (1950). A generalization of the method of maximum likelihood: Estimating a
mixing distribution (abstract). The Annals of Mathematical Statistics 12: 314–315.

Rosbergen, E., Pieters, R., and Wedel, M. (1997). Visual attention to advertising:
A segment-level analysis. Journal of Consumer Research 24: 305–314.

Ross, S.M. (2000). Introduction to Probability Models (7th Edition). San Diego:
Harcourt=Academic Press.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics 6:
461–464.

156 J. Dias and F. Willekens



Steele, F. and Diamond, I. (1999). Contraceptive switches in Bangladesh. Studies in
Family Planning 30: 315–328.

Taylor, H.M. and Karlin, S. (1994). An Introduction to Stochastic Modeling (Revised Edi-
tion). San Diego: Academic Press.

Titterington, D.M., Smith, A.F.M., and Makov, U.E. (1985). Statistical Analysis of Finite
Mixture Distributions. New York: John Wiley and sons.

Vaupel, J.W. and Yashin, A.I. (1985). The deviant dynamics of death in heterogeneous
populations. In N.B. Tuma (Ed.), Sociological Methodology. London: Jossey-Bass,
pp. 176–185.

Vaupel, J.W., Manton, K.G., and Stallard, E. (1979). The impact of heterogeneity in indi-
vidual frailty on the dynamics of mortality. Demography 16: 439–454.

Wedel, M., and Kamakura, W. (1999). Market Segmentation. Conceptual and Methodo-
logical Foundations. Boston: Kluwer Academic Publishers.

Wedel, M., DeSarbo, W.S., Bult, J.R., and Ramaswamy, V. (1993). A latent class Poisson
regression model for heterogeneous count data. Journal of Applied Econometrics 8:
397–411.

Willekens, F.J. (1999). Modeling approaches to the indirect estimation of migration
flows: from entropy to EM. Mathematical Population Studies 7: 239–278.

Model-based Clustering of Sequential Data 157


