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Abstract

Nonlinear dynamic systems with positive solutions and the parametric problem of entropy maximization (entropy

operator) are considered. The continuity, differentiability and boundedness of the entropy operator and the bound-

edness of the solutions of the dynamic system are derived using the global implicit function theorem. The technique of

positive dynamic systems is applied to modelling of the labour market dynamics. The model is based on description of

cohorts competition and of labour demand–supply interaction. A modification of the random search is used for

parametric identification of the model. The model is tested on real data from the EU-countries.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The book by Wilson (1991) and the paper by Popkov and Ryazantsev (1980) appeared almost simul-

taneously in 1980–1981. The concept of a dynamic system with entropy operator (DSEO-concept) was

proposed in these publications for the first time. Certainly it was meant for specific dynamic problems of
facilities location and spatial population distribution.

The main idea of these works consists of three parts. One of them is a separation of the general process

into two processes––slow and fast. The second part is based on an assumption that the slow process is

deterministic and the fast process is stochastic. The third part is the presentation of the fast stochastic

process as a sequence of local-stationary states. If the fast process is a stochastic distributive process then its

local-stationary state can be described as a state with maximum entropy over some feasible set.
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The DSEO-concept is useful for mathematical modelling of the resources exchange in regional systems
(Popkov et al., 1998), spatially-temporary evolution of the biological communities (Volterra, 1931), and

some processes of the chemical kinetics with a common catalyst (Eigen and Schuster, 1979).

The DSEO contains the nonlinearity which is described by the parametric mathematical programming

problem with entropy as a goal function. In the general case the entropy operator is characterized by a

multivalued mapping. Till now only some simplest types of DSEO have been investigated, namely DSEO

for which the entropy operator is described by the single-valued regular mapping (Popkov and Shvetsov,

1990; Shvetsov, 1989; Kitaev, 1997; Bobilev and Popkov, 2002).

In this paper the positive DSEO is considered. It is a rather widespread subclass of the DSEO,
which is useful for applications. Our contribution to the study of such systems is the development of

the mathematical methods of qualitative analysis of the entropy operator (continuity, smoothness,

boundedness) and of the positive dynamic systems with the entropy operator (boundedness of solu-

tions).

The second part of the paper is devoted to labour market modelling. Below it will be shown that the

labour market model belongs to the class of positive DSEO; it is a good application of the theoretical

results.

We also propose an algorithm for the model identification and represent the numerical study of this
model based on real data from the EU-countries.
2. Description of positive DSEO

Consider a dynamic system with two internal processes: slow xðtÞ ¼ fx1ðtÞ; . . . ; xnðtÞg and fast yðtÞ ¼
fy1ðtÞ; . . . ; ymðtÞg. The slow process is deterministic and the fast is stochastic. We assume that the time

relaxation sfast of the fast process is considerably less than the time relaxation sslow of the slow process. So
the fast process can be considered as a sequence of the local-stationary states y�ðtÞ characteristics of which
depend on the slow process, i.e. y�ðtÞ ¼ y�ðxðtÞÞ. In particular, this assumption is realized in the macro-

systems with self-reproduction and resources distribution (see Popkov, 1989, 1993).

Local-stationary state y�ðtÞ ¼ fy�1ðtÞ; . . . ; y�mðtÞg (where t is fixed) can be modelled like a random distri-

bution of the virtual elements among m boxes, capacities of which S1ðxðtÞÞ; . . . ; SmðxðtÞÞ are finite. The

elements can occupy the jth box with prior probability wjðxðtÞÞ and independently from the others. Dis-

tribution of the elements among boxes is accompanied by consumption of ðr þ lÞ types of the resources.

Denote the consumption function for the kth resource as /kðy; xÞ, where k ¼ 1; . . . ; ðr þ lÞ.
The generalized information entropy by Boltzmann (BE) (Popkov, 1996) is a characteristic of the

random distribution yðtÞ:
HBðy; xÞ ¼ �
Xm
j¼1

yj ln
yj

ewjðxÞ
; ð1Þ
where e ffi 2:718, y 2 Rm
þ ¼ fyj : yj P 0; j ¼ 1; . . . ;mg and 0 ln 0 ¼ 0.

If we can introduce a cell-structure in the boxes (for example, the capacity Sj is the number of cells in the

jth box), we use the generalized information entropy by Fermi (FE):
HFðy; xÞ ¼ �
Xm
j¼1

yj ln
yj

wjðxÞ

�
þ ðSj � yjÞ lnðSj � yjÞ

�
; ð2Þ
where 06 yj 6 SjðxÞ, j ¼ 1; . . . ;m, and 0 ln 0 ¼ 0.
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And by Einstein (EE):
HEðy; xÞ ¼ �
Xm
j¼1

yj ln
yj

wjðxÞ

�
� ðSj þ yjÞ lnðSj þ yjÞ

�
; ð3Þ
where y 2 Rm
þ and 0 ln 0 ¼ 0.

When the stocks of ðr þ lÞ resources are limited then the distributions yðtÞ must comply with certain

constraints which describe the feasible set
DðxÞ ¼ fy : /kðy; xÞ ¼ 0; /rþsðy; xÞ6 0; k ¼ 1; . . . ; r; s ¼ 1; . . . ; lg: ð4Þ

Thus, using the classical variation principle of statistical physics (Landau and Lifschitz, 1964) the local-

stationary state of the fast process can be represented in the following form:
y�ðxÞ ¼ argmax
y

ðHðy; xÞjy 2 DðxÞÞ > 0: ð5Þ
This expression describes the map Rn 7!Rm, an operator of which is called the entropy operator.

Now consider the slow process of the system. As the local-stationary state of the fast process is deter-

mined by the state of the slow process, then we can characterize the state of the system by the vector xðtÞ.
A dynamic system is called positive if xðtÞP 0 for any initial states xð0Þ > 0. This property is always valid

for the mathematical model of the system in the rate terms:
1

x
� dx

dt
¼ gðx; y�ðxÞÞ; ð6Þ
where � means the coordinate-wise operation.

In this equation g is a vector-function (g 2 Rn) such that gð0; 0Þ 6¼ 1. In fact, we can see that xðtÞP 0 for

all tP 0, if xð0Þ > 0, i.e. Eq. (6) describes the positive dynamic system. Further, we will consider the

function gðx; y�Þ of the following form:
gðx; y�Þ ¼ a� x� Qðx; y�Þ; a;Qðx; y�Þ 2 Rn
þ: ð7Þ
Thus, the system is described by the following equation:
dx
dt

¼ x� ða� x� Qðx; y�ðxÞÞÞ; ð8Þ
where y�ðxÞ is the entropy operator (5).

We can see that this equation transforms to the Lotka–Volterra (Volterra, 1931) equation if QðxÞ ¼ Q,
where Q is a constant matrix.

The function Qðx; y�Þ (8) can take different forms. One of them that we will use here, arises as a result of

the projection y�ðxÞ on Rn (m > n). Denoting projector as P ¼ ½pij P 0; i ¼ 1; . . . ; n; j ¼ 1; . . . ;m�, we obtain

QðxÞ ¼ Py�ðxÞ: ð9Þ
Thus, the class of the dynamic systems which will be studied in this article is described by the following

equation:
dx
dt

¼ x� ða� Py�ðxÞ � xÞ; ð10Þ
where y�ðxÞ is the entropy operator (5).
3. Entropy operator

Consider the entropy operator (5) with the feasible set (4) described by the system of equalities:
DðxÞ ¼ fy : /kðy; xÞ ¼ 0; k ¼ 1; . . . ; rg: ð11Þ
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Call the operator (5) and (11) the conditionally optimal entropy operator.

A general approach for studying of the entropy operator is based on the Lagrange method. We will show

this approach for the BE-operator and make a few remarks on the FE- and EE-operators.

Consider a compact subset X in Rn and point x 2 X . Introduce the Lagrange function
Lðy; x; kÞ ¼ HBðy; xÞ �
Xr
k¼1

kk/kðy; xÞ: ð12Þ
Optimality conditions for the BE-operator can be represented in the following form:
wjðy; x; kÞ ¼ ln
wjðxÞ
yj

�
Xr
k¼1

kk
o/kðy; xÞ

oyj
¼ 0; j ¼ 1; . . . ;m;

/kðy; xÞ ¼ 0; k ¼ 1; . . . ; r:

ð13Þ
Theorem 1. Let the following conditions be valid for all points x 2 X :

(a) the functions /kðy; xÞðk ¼ 1; . . . ; rÞ are twice continuously differentiable and monotonically increasing
over y;

(b) the Hessian ½o2/kðy;xÞ
oyjoyi

� is a positive definite matrix;
(c) there exists subset MðxÞ � Rm where the Jacobian ½o/kðy;xÞ

oyj
� has a full rank equal r;

(d) for all j ¼ 1; . . . ;m

/kð0; xÞ < 0; /kðy1; . . . ; yj�1;wjðxÞ; yjþ1; . . . ; ym; xÞ > 0; k ¼ 1; . . . ; r:

Then the Hessian of the Lagrange function (12) is a negative definite matrix.

Similar results can be obtained for the FE- and EE-operators, if we introduce the following additional

conditions (separability of the functions /k):
/kðy; xÞ ¼
X
l

/klðy; xÞ; k ¼ 1; . . . ; r: ð14Þ
The general idea of the proof is based on the investigation of the quadratic form

Gðy; x; kÞ ¼ hLyyðy; x; kÞh; hi, where Lyy is the Hessian of the Lagrange function and the vector h 2 Rm. Key is

the proof of nonnegativeness of the Lagrange multipliers, where the conditions of Theorem 1 are used. The

complete proof is given in Appendix A.
The qualitative properties of the BE-operator are investigated using the ‘‘global’’ theorem of implicit

functions (see Theorem A.1).

Theorem 2. Let the conditions of Theorem 1 be valid and assume the functions w1ðxÞ; . . . ;wmðxÞ are contin-
uous. Then for all x 2 X there exists the continuous BE-operator y�ðxÞP 0.

Theorem 3. Let the conditions of Theorem 1 be valid and assume the functions wðxÞ and /ðy; xÞ have the
smoothness’s order over x 2 X equal p. Then for all x 2 X the BE-operator has the smoothness’s order equal p.

The proofs can be found in Popkov (1995).

Lemma 1. Let the conditions of Theorem 1 be valid. Then the BE-operator is bounded, i.e. there exists a
positive constant C such that y�ðxÞ6C (for the FE-operator C ¼ maxðS1; . . . ; SmÞ).

The proof of Lemma 1 is given in Appendix A.
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4. Boundedness of the DSEO solutions

Consider the dynamic system (10) with conditionally optimal entropy operator (5) and (11).

Theorem 4. Let the following conditions hold:

(a) the conditions of Theorem 1;

(b) nonempty compact subsets X �
i � Rn

þ ði ¼ 1; . . . ; nÞ exist such that for x 2 X �
i ,

ai � ðP iyðxÞÞxi P 0; ð15Þ
and for x 2 X

�
i ,

ai � ðP iyðxÞÞxi < 0; ð16Þ
where X

�
i is the complement of the subset X �

i and P i is the ith-row of the matrix P .

Then there exists in Rn
þ a bounded set Y � ð

S
X �
i Þ such that for all initial points xð0Þ 2 Rn

þ trajectories
xðtÞ 2 Y for tP tðxð0ÞÞ > 0.

Proof. (1) Consider the initial point xð0Þ 2 intX �
i . As the set X �

i is compact then there exists a neighbour-

hood of the point xð0Þ where the first of the conditions (b) is valid for i and possibly for some i1; . . . ; ik. Note
that for the numbers j 6¼ i; i1; . . . ; ik the second condition (b) will be valid.

In this case the right sides of the (i; i1; . . . ; ik)th equations in (10) are positive, i.e.
_xið0Þ; _xi1ð0Þ; . . . ; _xik ð0Þ > 0. Hence, the components xiðtÞ; xi1ðtÞ; . . . ; xik ðtÞ, that arose from the point xð0Þ, will
increase monotonically over t. They reach the boundaries of the sets X �

i ;X
�
i1
; . . . ;X �

ik
at the moments of time

ti; ti1 ; . . . ; tik > 0.

For the next moment of time there are two possibilities for the components change over time. One of

them is a motion along the boundaries, as _xiðtiÞ; _xi1ðti1Þ; . . . ; _xik ðtik Þ ¼ 0 in the different parts of the

boundaries.
Hence in this case the components xiðtÞ; xi1ðtÞ; . . . ; xik ðtÞ are bounded.
The second possibility for the components change is a motion to the subsets X

�
i ;X

�
ik
; . . . ;X

�
ik
where the

second conditions (b) are valid. In this case the derivatives of these components become negative and the

components xiðtÞ; xi1ðtÞ; . . . ; xik ðtÞ decrease for t > ti; t > ti1 ; . . . ; t > tik respectively. Hence in this case the
components xiðtÞ; xi1ðtÞ; . . . ; xik ðtÞ are bounded too.

Now consider the behaviour of the components for which the second conditions (b) are valid if the initial

point belongs to the set X �
i . As the derivatives of these components are negative, then

xjðtÞ6 xjð0Þ; j 6¼ i; i1; . . . ; ik for the time interval 06 t6 s. For t > s there are two possibilities: to continue
motion in the sets X

�
j or to reach the sets X �

j . In the first decreasing of the components is continued, and in

the second we have the case considered above.

As the trajectory xðtÞ can visit all the sets X �
i , i ¼ 1; . . . ; n, and its boundedness on the Rn

þ is guaranteed

by the second conditions (b) then the bounded set Y declared in the theorem exist.

(2) Consider the initial point xð0Þ 2 X
�
i . In this case we have the symmetric picture with the same results. h
5. Labour market model

Labour is one of the components of any production process. However, a labour requirement is finite and

its amount (the so-called labour demand) is determined by profitability of production. All able to work
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population (belonging to the age-window of ability to work) is a labour supply in general. Labour demand
and supply have met in the labour market and the latter forms the age-specific structures of employment

and unemployment.

The main principle of the labour market is a competition for jobs among participants. Certainly, it is not

possible to model a competition on the microlevel, i.e. among people. Usually all participants are divided

into groups and the competition among these groups is considered.

We will consider groups created by date of birth (date of birth cohorts ~c). Such classification is very

convenient as it gives a possibility to transform the cohort-groups into the age-groups and to the age-

specific structure of the employment.
The process of time evolution of cohort- or age-structures of the employment is quasi-deterministic and

slow enough (van Imhoff and Henkens, 1998). A competition between cohorts is a stochastic process which

is realized significantly faster than change of the cohort-structure of employment.
5.1. Equations of the model

The state of the labour market at the calendar time ~t is characterized by a cohort-specific employment

structure (CSE). The CSE is a distribution of the relative number of employed workers over cohorts ~c and
time ~t, which is given by the density function denoted as wð~c;~tÞ. In order to study the labour market

dynamics we introduce the notion of a rate of employment change (REC), or CSE-rate (CSE-R) as a

relative temporary rate of the CSE function, denoted by cð~c;~tÞ:
1

wð~c;~tÞ
dwð~c;~tÞ

d~t
¼ cð~c;~tÞ; ð17Þ
where ~c is fixed.

We will consider the population with working ages ~a from interval eAw ¼ ½~a0; ~a1� (age-window eAw).

Dynamics of the labour market will be considered within the time interval eT ¼ ½~t0;~t1�. Without loss of

generality we consider ~t1 ¼ ~t0 þ ~a0.
Introduce the following shifted variables: a ¼ ~a� ~a0, a 2 Aw ¼ ½0; a��; t ¼ ~t �~t0, t 2 T ¼ ½0; ~a0�;

c ¼ ~c� ~c0, c 2 K ¼ ½0; ~a1�. In these expressions a� ¼ ~a1 � ~a0.
There is one-to-one relation among cohort, age and time:
c ¼ t � aþ a�: ð18Þ
At each moment of time t only part of cohorts c in the interval K belongs to the age-window Aw. All such

cohorts belong to the subset
Ct ¼ ½t; t þ a�� 2 K; t 2 T : ð19Þ
To describe the labour market state at time t we use three density functions which are closely connected to

each other:

• cohort-specific employment structure (CSE):

wðc; tÞ ¼ vðt � c; tÞ; c 2 Ct; t 2 T ; ð20Þ
• age-specific employment structure (ASE):

vða; tÞ ¼ wðt � a; tÞ; a 2 Aw; t 2 T ; ð21Þ
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• distribution of employed cohorts (DEC):

kðc; tÞ ¼

wðc; tÞ for c 2 ½0; ~a0�; t 2 ½0; c�;
0 for c 2 ½0; ~a0�; t 2 ½cþ 1; ~a0�;
wðc; tÞ for c 2 ½~a0 þ 1; a��; t 2 ½0; ~a0�;
0 for c 2 ½a� þ 1; ~a1�; t 2 ½0; c� ða� þ 1Þ�;
wðc; tÞ for c 2 ½a� þ 1; ~a1�; t 2 ½c� a�; ~a0�:

8>>>>><>>>>>:
ð22Þ

For modelling of the labour market dynamics we use the REC-function cðc; tÞ (17). Then we obtain the

following differential equations:
dwðc; tÞ
dt

¼ wðc; tÞcðc; tÞ; c 2 Ct; t 2 T ; ð23Þ
where Ct is determined by (19).

The simple Euler scheme with step h ¼ 1[year] gives the following difference equations, which describe

the model of the labour market:
wðc; t þ 1Þ ¼ wðc; tÞ½1þ cðc; tÞ�; c 2 Ct; t 2 T1; ð24Þ

where Ct is defined in the expression (19) and
T1 ¼ T n ~a0 ¼ ½0; ~a0 � 1�: ð25Þ

The initial distribution wðc; 0Þ is given by the following conditions:
wðc; 0Þ ¼ w0ðcÞ; 0 < w0 < 1; c 2 C0;X
c2C0

w0ðcÞ ¼ 1: ð26Þ
The boundary conditions wBðt þ 1Þ take the form:
wðt þ a� þ 1; t þ 1Þ ¼ wBðt þ 1Þ; 0 < wBðt þ 1Þ < 1; t 2 T1: ð27Þ

Since initial and boundary conditions are positive, all solutions of the differential equations (23) are positive

too. Hence the system (23) is positive dynamic system.

However, in difference equations (24) negative solutions are possible. Also the distribution wðc; t þ 1Þ
(24) is not a density function.

Summing up, the main equations of the labour market model can be represented in the following form:
ŵðc; t þ 1Þ ¼ wðc; tÞ½1þ cðc; tÞ�; c 2 Ct if ŵðc; t þ 1ÞP 0;
0 if ŵðc; t þ 1Þ < 0;

�
ð28Þ

wðc; t þ 1Þ ¼ ŵðc; t þ 1Þ
Nðt þ 1Þ ; c 2 ðCt n tÞ; ð29Þ
where
Nðt þ 1Þ ¼
X

c2ðCtntÞ

ŵðc; t þ 1Þ
1� wBðt þ 1Þ :
5.2. REC-function

We take into account cohorts competition and labour supply–demand interaction which are the main

causes of changes in the state of the labour market.
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Competing for jobs cohort c wants to keep its state in the labour market and cohorts l 6¼ c want to push c
from the labour market. Supply–demand interaction characterizes an influence socioeconomic system on

the labour market. It is an aggregate factor of the economic level, population activity, level of self-

reproduction, life style and so on.

According to this phenomenology we consider three components of the REC-function:

• qðc; tÞ––own competitiveness of the cohort c;
• jðc; tÞ––comparative competitiveness of the cohorts c and l;
• rðc; tÞ––labour supply–demand interaction.

Represent the REC-function cðc; tÞ in the following form:
cðc; tÞ ¼ qðc; tÞ þ jðc; tÞ þ rðc; tÞ: ð30Þ
The main factor of own competitiveness is a cohort(age)-factor (Klevmarken, 1993). Age is linked with an

employment protection and cohort�s skills. This phenomenon can be reflected by the following equation:
qðc; tÞ ¼ qðcÞ ¼ q expð�fcÞ; c 2 Ct; ð31Þ
where q and f are parameters.

Comparative competitiveness is the sum of the comparative competitiveness of the cohorts l 2 Ct n c in

relation to cohort c. The latter is proportional to wðl; tÞ and the coefficient of proportion depends on the

utility of cohorts l and c.
According to the utility function approach comparative competitiveness depends on cohort-distance

factors Cðc; lÞ and comparative utility factorsHðc; l; tÞ. Since these factors are independent, we can describe

their (H and C) influence multiplicatively.

We use an exponential function between the distance- and the utility-factors:
Cðc; lÞ ¼ expð�ajc� ljÞ; ð32Þ

Hðc; l; tÞ ¼ h exp½gðuðc; tÞ � uðl; tÞÞ�; ð33Þ
where a, g, h are parameters; uðc; tÞ is the utility function of the cth cohort. The main factor influencing the

cohort utility is the number of employed persons in the cohort xðc; tÞ.
We assume a decreasing marginal gain in utility for every additional employee of the cohort, which can

be represented by the logarithmic function
uðc; tÞ ¼ ln xðc; tÞ: ð34Þ
We restore the distribution of the employed persons over cohorts using the macrosystem technique

(Popkov, 1995), in which jobs at time t are allocated randomly over cohorts c, according to the prior

probabilities wðc; tÞ, while taking into account the constraints with respect to the total labour demand and

the cohort-specific labour supply. In this case the distribution xðc; tÞ can be determined by the entropy

maximization problem
H ½X ðtÞ� ) max
x

;X
c2Ct

xðc; tÞ ¼ REðtÞ;

0 < xðc; tÞ < Sðc; tÞ; c 2 Ct;

ð35Þ
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where the entropy H ½X ðtÞ� is determined by the following expression:
H ½X ðtÞ� ¼ �
X
c2Ct

xðc; tÞ ln xðc; tÞ
wðc; tÞ

�
þ ðSðc; tÞ � xðc; tÞÞ lnðSðc; tÞ � xðc; tÞÞ

�
; ð36Þ
and X ðtÞ ¼ fxðt; tÞ; . . . ; xðt þ a�; tÞg.
This problem describes the mapping of the functions wðc; tÞ, Sðc; tÞ, REðtÞ into the function xðc; tÞ. The

operator realizing this mapping is the entropy operator.

By combining the expressions (32) and (33) we arrive at the formula for the comparative competitive-

ness:
jðc; tÞ ¼ h
X
l2Ctnc

expð�ajc� ljÞ xðc; tÞ
xðl; tÞ

� �g

: ð37Þ
Consider the third component of the REC-function (30) and introduce the following relative variables:
rEðtÞ ¼ REðtÞ
SðtÞ ; lðc; tÞ ¼ Sðc; tÞ

SðtÞ : ð38Þ
In the general case the demand–supply component rðc; tÞ (30) is a function of both rEðtÞ and lðc; tÞ. We use

a bilinear function:
r½rEðtÞ; lðc; tÞ� ¼ brEðtÞlðc; tÞ; ð39Þ

where b is a parameter.

In the expression (37) x�ðc; tÞ, c 2 Ct is an entropy optimal distribution of employed persons over cohorts
which is determined by the solution of the conditional maximization of the entropy (35), (36) (Popkov,

1995):
x�ðc; tÞ ¼ wðc; tÞSðc; tÞ
wðc; tÞ þ z�ðtÞ½1� wðc; tÞ� ; ð40Þ
where Lagrange exponential multiplier z�ðtÞ is determined by the solution of the equation
wðz; tÞ ¼ 1

REðtÞ
X
c2Ct

wðc; tÞSðc; tÞ
wðc; tÞ þ z�ðtÞ½1� wðc; tÞ� ¼ 1: ð41Þ
Thus, Eqs. (28)–(31), (37), (39)–(41) describe the dynamic model of the labour market, which belongs to the

positive dynamic system with the entropy operator.

5.3. Parameter identification

We can see from the equations of the model that they have certain numbers of unknown parameters:

y0 ¼ q, y1 ¼ f, y2 ¼ g, y3 ¼ h, y4 ¼ a, y5 ¼ b.
For identification of these parameters we use the following real data in the time interval T : vrða; tÞ,

Srða; tÞ, RE
r ðtÞ. Using the data of the ASE-function vrða; tÞ it is possible to calculate the real CSE-function

wrðc; tÞ and the real DEC-function krðc; tÞ (see the formulas (20)–(22)).

We have the real ASE- and DEC-functions vrða; tÞ, krðc; tÞ and the modelled functions vða; t; yÞ, kðc; t; yÞ.
It is necessary to define a criterion of their closeness.

Define the maximal row-error for the ASE-functions in the following form:
etðyÞ ¼ max
t2T1

eðy; tÞ; ð42Þ
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where
eðy; tÞ ¼
P

a2Aw
ðvða; tÞ � vrðy; tÞÞ

2P
a2Aw

v2ða; tÞ þ
P

a2Aw
v2r ða; tÞ

: ð43Þ
The divergence between the DEC-functions is estimated by the following maximal column-error:
ecðyÞ ¼ max
c2K

eðy; cÞ; ð44Þ
where
eðy; cÞ ¼
P

t2T1ðkðc; tÞ � krðc; tÞÞ2P
t2T1k

2ðc; tÞ þ
P

t2T1k
2
r ðc; tÞ

: ð45Þ
Also the entropy criterion is introduced for the ASE-functions:
HðyÞ ¼
X
a2Aw

X
t2T1

vða; tÞ ln vða; tÞ
vrða; tÞ

; ð46Þ
which is used for regularization of the identification problem.

Finally, the identification criterion can be represented in the following form:
eðyÞ ¼ metðyÞ þ ð1� mÞecðyÞ þ kHðyÞ; ð47Þ

where the weight coefficients are m 2 ½0; 1� and k 2 ½0; 1�.

The optimal parameters of the model are
y� ¼ argmineðyÞ: ð48Þ

It is known that the function eðyÞ has many minimum points. In our case we have only information about
values of the identification criterion eðyÞ and the domains of the parameters localization y�i 6 yi 6 yþi ,
i 2 ½0; 5�.

For search of the quasi-global minimum we apply combination of the local gradient search and

‘‘intelligent’’ random jumps (with analysis of the results of certain numbers of random jumps). If during

some random jumps the value of the function eðyÞ is not decreased then some parameters of jumps are

changed. In our case the direction and values of the random jumps are changed.

The identification algorithm can be represented in the following form:

Step 0. Initial conditions. Input initial values of the parameters y ¼ y0 and calculate the function eðy0Þ, and
memorize of the values y0i , i 2 ½0; 5� and eðy0Þ.

Step 00. Local gradient search; determination of the gradient components:
ryðeðy0ÞÞ ¼
1

D
½eðy0 þ DÞ � eðy0Þ�:

Step 01. Gradient step:

y01 ¼ y0 � pryðeðy0ÞÞ;
calculate �ðy01Þ and check the condition
if jeðy0Þ � eðy01Þj6 d; then stop:

Step 0s. The sth step is stop; comparison eðy0sÞ with eðy0Þ and memorizing of the smallest (for instance,

eðy0sÞ) and y0s.
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Step 1. Random jump.

y1 ¼ y0s þ #1;

and calculation of the value eðy1Þ, and comparison it with eðy0sÞ.
Steps 10–1s. Local gradient search.

Step 2. Random jump; comparison �ðy1sÞ with minð�ðy1ÞÞ; eðy0sÞ and memorizing the smallest from them.

Step N. Random jump; N is the fixed input variable.

The parameters of the local gradient search: test step D, gradient step p and error d are input parameters

of the algorithm.

5.4. Model test

The model was tested on the problem of the parameters identification for nine EU-countries (Belgium,

Denmark, France, Greece, Ireland, Italy, Luxemburg, the Netherlands, United Kingdom). We use the data

base on the labour force from 1983 till 1996, presented by the Netherlands Interdisciplinary Demographic

Institute (NIDI).

Identification of the model parameters has two aims. One of them is a pragmatic aim: if we know themodel

parameters then we can use this model for prediction of the labour market evolution. And the other is a
cognitive aim: couldwe take six parameters of themodel as an image of the country labourmarket? If yes, then

the set of six parameters reflects (certainly, in some framework) the employment behaviour in the country.

Results of identification are given in Table 1. In Table 1 and the other tables the following notations are

introduced: BG––Belgium, DN––Denmark, F––France, GR––Greece, IR––Ireland, I––Italy, LB––Lux-

emburg, NL––the Netherlands, UK––United Kingdom.

The DEC-functions kðc; 1989Þ (real and modelled) for France and the Netherlands are shown in Figs. 1

and 2.

Now we attempt to classify the countries over the characteristics of the labour market.
Consider the six-dimensional space of the parameters and define a distance between the vectors (or

points) yi and yj in the following form:
Table

Cou

BG

DN

F

GR

IR

I

LB

NL

UK
dðyi; yjÞ ¼
P5

s¼0ðyis � yjsÞ
2P5

s¼0½yis�
2 þ

P5

s¼0½y
j
s �2

: ð49Þ
It is a positive function which is equal to zero when the points i and j coincide. The values of this function
are shown in Table 2.
1

ntry q f g h a b

29.230 0.010 0.001 0.001 5.627 37.519

45.004 0.010 0.002 0.001 2.000 82.000

40.002 0.010 0.002 0.001 2.000 90.000

9.301 0.010 0.001 0.001 0.502 0.001

11.684 0.010 0.002 0.001 2.000 50.008

20.002 0.010 0.002 0.002 2.000 100.00

40.004 0.010 0.002 0.001 2.006 100.00

48.549 0.010 0.002 0.002 2.254 99.975

54.972 0.010 0.004 0.001 1.527 90.049



Fig. 1.

Fig. 2.
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Using this table we can choose a group of countries, a distance between which is less than some threshold
d. The results of such a classification are given in Table 3.

Now we compare this classification with an other which we can obtain from comparison of the real age-

specific employment structures of the EU-countries.

We will form the criterion of classification which could take into account the integral distinction between

the age-specific employment structures and the activity rates of young people. The first is measured as the

normalized quadratic error between two functions for fixed time t:
.i;jðtÞ ¼
Pa�

a¼0½virða; tÞ � vjrða; tÞ�
2Pa�

a¼0½virða; tÞ�
2 þ

Pa�

a¼0½v
j
rða; tÞ�2

: ð50Þ
We consider time t ¼ 4 (1989). The values of this function are represented in Table 4.



Table 4

Country BG DN F GR IR I LB NL UK

BG 0.000 0.694 0.109 0.719 0.619 0.380 0.157 0.287 0.760

DN 0.693 0.000 0.475 0.569 0.388 0.339 0.397 0.276 0.118

F 0.109 0.475 0.000 0.393 0.616 0.142 0.178 0.254 0.516

GR 0.718 0.569 0.393 0.000 1.000 0.138 0.708 0.811 0.615

IR 0.619 0.388 0.616 1.000 0.000 0.691 0.263 0.249 0.305

I 0.380 0.339 0.142 0.138 0.691 0.000 0.342 0.392 0.395

LB 0.157 0.397 0.178 0.707 0.263 0.342 0.000 0.108 0.360

NL 0.287 0.276 0.254 0.811 0.249 0.392 0.108 0.000 0.264

UK 0.760 0.118 0.516 0.615 0.305 0.395 0.360 0.264 0.000

Table 2

Country BG DN F GR IR I LB NL UK

BG 0.000 0.191 0.724 0.823 0.141 0.690 0.607 0.581 0.451

DN 0.191 0.000 0.205 0.860 0.165 0.271 0.191 0.171 0.112

F 0.724 0.205 0.000 0.964 0.177 0.023 0.004 0.006 0.007

GR 0.823 0.860 0.964 0.000 0.950 1.000 0.969 0.959 0.937

IR 0.141 0.165 0.177 0.950 0.000 0.157 0.179 0.194 0.182

I 0.690 0.271 0.023 1.000 0.158 0.000 0.012 0.216 0.034

LB 0.607 0.191 0.004 0.969 0.180 0.012 0.000 0.002 0.007

NL 0.581 0.171 0.006 0.960 0.194 0.021 0.002 0.000 0.003

UK 0.451 0.112 0.008 0.937 0.182 0.034 0.007 0.003 0.000

Table 3

d Group of countries

0.002 LB, NL

0.006 F, LB, NL, UK

0.02 F, I, LB, NL, UK

0.05 F, I, LB, NL, UK
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The activity rates AiðtÞ of young people in the labour market are determined by the ASE-function virða; tÞ
in the following form
Aið4Þ ¼
X14
a¼0

virða; 4Þ: ð51Þ
The values of the activity rate are represented in Table 5.

It is plausible to assume that the higher the general activity rate in both countries i and j the less weight
of the integral error .i;j. So the generalized criterion of classification takes the form
J i;jð4Þ ¼ .i;jð4Þ
Aið4Þ þ Ajð4Þ : ð52Þ
The values of this criterion are represented in Table 6.

From this table we can see that the minimal value of the generalized error J ijð4Þ is equal to 0.063. This

generalized error corresponds to Luxemburg (LB, 7) and the Netherlands (NL, 8). Hence, they create the
class of the countries closest to each other from the point of view of the employed people behaviour in the

labour market.



Table 5

Country BG DN F GR IR I LB NL UK

Aið4Þ 0.172 0.226 0.163 0.126 0.256 0.154 0.218 0.237 0.239

Table 6

Country BG DN F GR IR I LB NL UK

BG 0.000 0.541 0.118 1.000 0.425 0.434 0.127 0.213 0.560

DN 0.541 0.000 0.390 0.603 0.203 0.295 0.244 0.156 0.067

F 0.118 0.390 0.000 0.576 0.446 0.170 0.151 0.198 0.401

GR 1.000 0.603 0.576 0.000 0.935 0.215 0.776 0.818 0.617

IR 0.425 0.203 0.446 0.934 0.000 0.529 0.142 0.124 0.151

I 0.434 0.295 0.170 0.215 0.529 0.000 0.307 0.324 0.325

LB 0.127 0.244 0.151 0.776 0.142 0.307 0.000 0.063 0.209

NL 0.213 0.156 0.198 0.818 0.124 0.324 0.063 0.000 0.141

UK 0.560 0.067 0.401 0.617 0.151 0.325 0.209 0.141 0.000
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Consider Table 4, which contains the values of the normalized quadratic error .ijð4Þ (50). This variable is
a part of the generalized criterion J ijð4Þ (52) (without the activity rates). From Table 4 we can see that the

minimal value of .ijð4Þ is equal to 0.108. This error corresponds to the same class (LB, NL).

Hence, we can consider the class (LB, NL) as stable enough: classification for two criteria (. and J ) gives
the same result.

If we compare this class with the class created by the closeness of the model parameters (see Table 3, for

d ¼ 0:002) then we can see that they coincide and the model parameters represent the image of the country

labour market.

Thus, the concept of the positive dynamic system with entropy operator is useful for modelling of labour
market dynamics. A model of the employment structures in terms of cohorts for nine EU countries was

constructed, its parameters were identified and its adequacy was tasted.
Appendix A

Proof of Theorem 1. Consider the quadratic form
Gðy; x; kÞ ¼ hLyyðy; x; kÞh; hi; ðA:1Þ

where
Lyyðy; x; kÞ ¼
o2L
oyjoyi

� �
¼

1
yj
�
Pr

k¼1 kk
o2/kðy;xÞ

oy2j
for j ¼ i;

�
Pr

k¼1 kk
o2/kðy;xÞ
oyjoyi

for j 6¼ i:

8<: ðA:2Þ
According to (A.2) the quadratic form (A.1) takes the form
G ¼ �
Xm
j¼1

1

yj
h2j �

Xr
k¼1

kk
Xm
i;j¼1

o2/k

oyjoyi
hjhi

 !
: ðA:3Þ
The first component in this equality is negative and it is equal to zero if h � 0.

Show that for the BE-operator the Lagrange multipliers kk P 0, k ¼ 1; . . . ; r, if the conditions of The-

orem 1 are valid.
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From (13) we have
yj � ~wjðxÞ exp
 

�
Xr
k¼1

kkbkjðy; xÞ
!

¼ 0; j ¼ 1; . . . ;m;
where
bkjðy; xÞ ¼
o/k

oyj
:

Introduce the variables
zk ¼ expð�kkÞP 0:
Then the first equations in (13) can be represented in the following form:
wjðy; x; zÞ ¼ yj � ~wjðxÞ
Yr
k¼1

z
bkjðy;xÞ
k ¼ 0; j ¼ 1; . . . ;m: ðA:4Þ
Consider the vector zP 0 and direction p ¼ fpk P 0, k ¼ 1; . . . ; rg. Determine the derivative of the

function Wj at the point z with respect to direction p. We have
dwj

dd

����
d¼0

¼ �~wjðxÞ
Xr
l¼1

Yr
k¼1;k 6¼l

ðzk þ dpkÞbkjðy;xÞ 	 bljðy; xÞplðzl þ dplÞbljðy;xÞ�1
:

It is seen that this derivation is negative for any z, pP 0, if the condition (a) of Theorem 1 is valid. Then the

functions wjðy; x; kÞ are strong monotonically decreasing over y.
Now consider the condition (d) of Theorem 1. From this condition it is followed that
y 2 Y ¼ f0 < yj 6 ~wjðxÞ; j ¼ 1; . . . ;mg: ðA:5Þ

Consider the set Z ¼ fz : 06 zk 6 1; k ¼ 1; . . . ; rg. We can see from (A.4) that
wjðy; x; z1; . . . ; zh�1; 0; zhþ1; . . . ; zrÞ > 0;

wjðy; x; 1Þ6 0; j ¼ 1; . . . ;m:
Taking into account that the functions W decrease strong monotonically we have that in the set Z there

exists at least one solution z�, i.e. 0 < z�k 6 1, k ¼ 1; . . . ; r. According to (A.4) for z� there exists the vector y�

belonging to the set Y .
Thus, we have that 06 kk < 1, k ¼ 1; . . . ; r, and the quadratic form (A.4) is strong negative defined. h

Consider the Jacobian of the system (13):
Jðy; x; kÞ ¼ Aðy; x; kÞ B0ðy; x; kÞ
Bðy; x; kÞ 0

� �
; ðA:6Þ
where
Aðy; x; kÞ ¼ o2L
oyjoyi

� �
; ðA:7Þ

Bðy; x; kÞ ¼
�
� o/kðy; xÞ

oyj

�
: ðA:8Þ
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Lemma A.1. Let ðm	 mÞ-matrix A be a definite positive (negative) one and ðr 	 mÞ-matrix B has the full rank
r. Then det J 6¼ 0.

Proof. To prove the lemma, let us assume the opposite, i.e. let det J ¼ 0. Then there exists an eigenvector

z ¼ u
v

� �
which corresponds to the zero eigenvalue and is such that
Jz ¼ 0: ðA:9Þ

Taking into account the structure of J (A.6), we obtain
Auþ B0v ¼ 0; Bu ¼ 0: ðA:10Þ
By multiplying the first equality by u0 from left, we obtain
u0Auþ v0Bu ¼ 0:
But from the second equality in (A.10) we have v0Bu ¼ 0 and u0Au ¼ 0. Since the matrix A is defined as

positive (negative) one, the corresponding quadratic form is zero only on zero vectors ðu � 0Þ. Return to

the first equality in (A.10). It implies that Bv ¼ 0 for u ¼ 0. As B has the full rank equal r then v � 0. Thus

the eigenvector z � 0. h

The proofs of Theorems 2 and 3 follow from the global theorem of implicit function existence and local

theorem of implicit function differentiability. The latter is well known, so we give only the first.

Consider the equation
W ðu; xÞ ¼ 0; ðA:11Þ
where u ¼ fy; kg 2 Rnþr and the ðmþ rÞ vector-function
W ðu; xÞ ¼ Wðu; xÞ
Uðu; xÞ

� �
: ðA:12Þ
Theorem A.1. Let the function W ðu; xÞ ((A.11) and (A.12)) be continuous with respect to its variables and let
the following conditions hold for any fixed x 2 Rn:

(a) det Jðu; xÞ 6¼ 0 for any u 2 Rmþr;
(b) limkuk!1 W ðu; xÞ ¼ 
1.

Then there exists the unique implicit function uðxÞ defined on Rn.

Proof. The function W ðu; xÞ generates the vector field
FxðuÞ ¼ W ðu; xÞ ðA:13Þ

for any fixed x 2 Rn. The field is continuous by the theorem conditions.

Introduce the vector field
PvðuÞ ¼ FxðuÞ � v; ðA:14Þ

where v 2 Rn is a fixed vector.

It is clear that, according to (b), for the fixed v the vector field PvðuÞ has no zeros on the spheres kuk ¼ q
if q is large enough. Therefore the rotation of PvðuÞ is defined on the spheres kuk ¼ q with sufficiently large

q (Krasnoselsky and Zabreiko, 1975).
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Consider two vector fields produced in (A.14) by the vector v, namely:
Pv1ðuÞ ¼ FxðuÞ � v1; Pv2ðuÞ ¼ FxðuÞ � v2: ðA:15Þ

The vector fields are homotopic on spheres with sufficiently large radii and so they have the same rotations:
cðPv1Þ ¼ cðPv2Þ: ðA:16Þ
The vector fields Pv1 and Pv2 do not degenerate on the spheres with large radii, but each of them can have a

number of singular points in the ball kuk6 q1 < q. Denote jðv1Þ and jðv2Þ as the numbers of singular points

for the fields Pv1 and Pv2 , respectively. Since these fields are homotopic, we have
jðv1Þ ¼ jðv2Þ ¼ j: ðA:17Þ
Let the fieldPvðuÞ have j singular points in the ball kuk6 q1 < q. These points are isolated by the condition

(a) of the theorem.

According to Krasnoselsky and Zabreiko (1975) the index of the singular point u0 is
indðu0Þ ¼ ð�1Þbðu
0Þ
; ðA:18Þ
where bðu0Þ is the number of eigenvalues of the Jacobian Jðu0; xÞ which have negative real parts. The

definition shows that the index value, namely +1 or )1, depends on the evenness of bðu0Þ, not on its

absolute value.

The evenness of bðu0Þ turns out to be the same for all the singular points. This follows from condition (a)

of the theorem. In fact, since det Jðu; xÞ 6¼ 0 for any x 2 Rn, the eigenvalues of Jðu; xÞ can pass from the left

half-plane to the right one only by pairs, i.e. real eigenvalues are transformed into pairs of complex-con-

jugates and the latter then intersect the imaginary axis.
By taking into account this fact and (A.17) and (A.18), we obtain the rotation of homotopic field (A.14):
cðPvÞ ¼ jð�1Þb; ðA:19Þ
where b is the number of eigenvalues of the matrix P0
vðuÞ ¼ Jðu; xÞ which have a negative real part for some

u.
Now let us show that the vector fieldPvðuÞ has a unique singular point in the ball kuk6 q1 < q. Consider

the equation:
PvðuÞ ¼ FxðuÞ � v ¼ 0: ðA:20Þ

Let the equation have j singular points for any fixed v, i.e. there exist j functions u1ðvÞ; . . . ; ujðvÞ. So the

equation (A.20) determines a multivalued function uðvÞ, with j its branches being isolated (the latter fol-

lows from isolation of the singular points). Each branch uiðvÞ determines in Rn an open subset Ui (by
condition (b) of the theorem), with
[j

i¼1

Ui ¼ Rmþr:
This is possible only if j ¼ 1. Hence, the rotation of PvðuÞ equals ð�1Þb and, by the homotopy, the rotation

of P0ðuÞ ¼ FxðuÞ equals ð�1Þb too.

Hence, for any x 2 Rn there exists the unique function uðxÞ for which the function W ðu; xÞ is zero. h

Proof of Lemma 1. See (A.5). The FE-operator is limited by maxðS1; . . . ; SmÞ due to the form of the entropy
function (13). h
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